

OVERVIEW

- Introduction
- Approach
- Propellant composition
- Rheological modelling and closed vessel testing
- Propellant grain geometry
- Preliminary propellant manufacturing and testing
- Processing with a 30mm co-rotating twin screw extruder
- Propellant characterization
- Firing tests
- Conclusions

INTRODUCTION

- Aim of the project: evaluation of new 35 mm calibre ammunition performance
- In-house testing (TNO Laboratory for Ballistic Research)
- Previously manufactured DB for 35 mm:
 - DB propellant composition
 - 45 mm continuous co-rotating twin-screw extruder
 - 10 wt% solvent
- New DB propellant with equal performance
 - Comparable composition based on JA-2 replacement
 - Solvent-free
 - 30 mm continuous co-rotating twin-screw extruder

INTRODUCTION

INTRODUCTION

- Previous work ARDEC/TNO: 'Definition of a JA-2 Equivalent Propellant to be Produced by Continuous Solventless Extrusion', Journal of Applied Mechanics, May 2013
- 120 mm calibre
- Propellant grain:

) Shape: 19-perf

Diameter: 11.6 mm

- Produced with 45 mm co-rotating twin-screw extruder (TSE)
 -) 10 15 kg/h
 - Single die

1: extruder head 2: extruded propellant strand

APPROACH

- TNO propellant development approach
- Thermodynamic-, burning-, and rheological properties known from 120 mm development
-) IB simulations
 - Small grain diameter required: ~ 5 mm
 - Development of new die design
- Ram extrusion experiments to validate burning properties (small scale: < 1 kg)
- Determination of TSE screw design and process parameters
- Continuous extrusion batch

PROPELLANT COMPOSITION

- JA-2 equivalent composition
- Slightly higher content of blasting oils (less than some German tank propellants)
- Tuning mechanical properties (viscosity; flow behaviour in extruder) by addition of green plasticizer
- Non-energetic plasticizer reduces flame temperature
 - Force ~1100 J/g
 - Flame temperature ~3000 K

RHEOLOGICAL CHARACTERIZATION

- Safe TSE operation requires reliable prediction of:
 - Pressure drop over extruder head and die
 - Temperatures and pressures along extruder
- Flow of propellant paste through a die is characterized by using a double barrel capillary rheometer
 - Shear viscosity
 - Extensional viscosity

- Extensional viscosity
- Shear viscosity
- - Model fit shear viscosity
- Power law extensional visc.

RHEOLOGICAL MODELLING

- Pressure drop over die: commercially available 2D-FEM simulation software
- Extruder head: conical entry part and capillary part of the die (determining final propellant shape; cylindrical, slotted, hexagonal, rosette)
- TSE screw configuration and process parameters determined by commercially available software

TSE internal conditions for typical screw configuration

Flow pattern in die (red: highest paste velocity, blue: lowest velocity)

TSE screws with transport, compacting and kneading elements

PROPELLANT GRAIN GEOMETRY

- Cylindrical 19-perf grain geometry
- Propellant burn rate determined from closed vessel tests with non-perforated strands (from rheometer)
- Websize 19-perf grains determined by IB simulations

PRELIMINARY PROPELLANT

- Die manufacturing
- Validation pressure drop by small scale ram extrusion (< 1 kg)</p>
- Closed bomb testing

Previous batch (produced with 10 wt% solvent) $L_{av} = 2.05 \text{ MPa}^{-1} \text{ s}^{-1}$

Test batch (unequal inner and outer websizes)

Data used for calculation of burn rate and correction of grain geometry

Propellant grain geometry optimization / die adjustment (high progressivity = equal websizes)

PROCESSING WITH A 30 MM CO-ROTATING TWIN SCREW EXTRUDER (TSE)

CHARACTERIZATION OF THE EXTRUDED PROPELLANT

) Dynamic vivacity: $L_{(0.3...0.7)} = 2.03 \text{ MPa}^{-1}\text{s}^{-1}$ Expected: $L_{(0.3...0.7)} = 2.05 \text{ MPa}^{-1}\text{s}^{-1}$

Diameter: 5.1 mm

Websize: 0.6 mm

) Perf. diameter: 0.3 mm

FIRING TESTS

- Various projectile types
- Small variations in projectile mass (M_c)
- Equal performance as previous propellant batch ('pp'; manufactured using solvent)
- Larger dispersion at low charge mass

CONCLUSIONS

- The composition and grain geometry of a DB propellant were determined by interior ballistic calculations.
- Subsequently, the conditions for the manufacturing of this propellant were determined using rheological properties of the propellant paste.
- The double base propellant was successfully manufactured by solvent-free extrusion using a 30mm co-rotating twin screw extruder.
- The obtained extrusion conditions were in good agreement with simulations.
- The propellant dimensions and density were very close to the theoretically expected values.
- Burn properties and gun performance equal to those of previous propellant batch produced using solvent.

